Рабочая программа по физике 9 класс А. В.Перышкин, Е.М. Гутник
Рабочая программа учебного предмета «Физика» для 9 класса на 2019-2020 учебный год разработана на основе:
1. Федерального государственного образовательного стандарта основного общего образования. Приказ Министерства образования РФ от 17.12.2010 г №1897 с изменениями
2. Примерной основной образовательной программы основного общего образования М., Просвещение 2015 г.
3.Примерной программы по учебным предметам. Физика 7-9 классы. Естествознание 5 класс, М.: «Просвещение», 2012.
4. Примерной программы основного общего образования по физике. 7-9 классы» (В. А. Орлов, О. Ф. Кабардин, В. А. Коровин, А. Ю. Пентин, Н. С. Пурышева, В. Е. Фрадкин, М., «Просвещение», 2013 г.)
5.. Программы для общеобразовательных учреждений . Физика и астрономия. 7-11 классы/: А.В.Перышкин, Е.М. Гутник. М.: Дрофа, 2010.
6. Федерального перечня учебников, рекомендованного (допущенного) к использованию в образовательном учреждении, реализующего программы общего образования на 2019-2020 учебный год
На изучение физики в 9 классе отводится 2 часа в неделю (68 часов),
Для реализации программного содержания используется учебник: Перышкин А. В., Физика. 9 кл : учебник/ А.В. Перышкин, Гутник Е.М – 6- е изд., стереотип.-М.: Дрофа, 2019
Сборник задач по физике 7-9 класс (В. И. Лукашик) пособие для общеобразовательных учреждений –М.: Просвещение, 2014г.
Планируемые результаты освоения учебного предмета.
Программа позволяет добиваться следующих результатов освоения образовательной программы основного общего образования.
Личностными результатами обучения физике являются:
•сформированность познавательных интересов, интеллектуальных и творческих способностей учащихся;
•убежденность в возможности познания природы, в необходимости разумного использования достижений науки и технологий для дальнейшего развития человеческого общества, уважение к творцам науки и техники, отношение к физике как элементу общечеловеческой культуры;
•самостоятельность в приобретении новых знаний и практических умений;
•готовность к выбору жизненного пути в соответствии с собственными интересами и возможностями;
•мотивация образовательной деятельности школьников на основе личностно ориентированного подхода;
•формирование ценностных отношений друг к другу, учителю, авторам открытий и изобретений, результатам обучения.
Метапредметными результатами обучения физике в основной школе являются:
•овладение навыками самостоятельного приобретения новых знаний, организации учебной деятельности, постановки целей, планирования, самоконтроля и оценки результатов своей деятельности, умениями предвидеть возможные результаты своих действий;
•понимание различий между исходными фактами и гипотезами для их объяснения, теоретическими моделями и реальными объектами, овладение универсальными учебными действиями на примерах гипотез для объяснения известных фактов и экспериментальной проверки выдвигаемых гипотез, разработки теоретических моделей процессов или явлений;
•формирование умений воспринимать, перерабатывать и предъявлять информацию в словесной, образной, символической формах, анализировать и перерабатывать полученную информацию в соответствии с поставленными задачами, выделять основное содержание прочитанного текста, находить в нем ответы на поставленные вопросы и излагать его;
•приобретение опыта самостоятельного поиска, анализа и отбора информации с использованием различных источников и новых информационных технологий для решения познавательных задач;
•развитие монологической и диалогической речи, умения выражать свои мысли и способности выслушивать собеседника, понимать его точку зрения, признавать право другого человека на иное мнение;
•освоение приемов действий в нестандартных ситуациях, овладение эвристическими методами решения проблем;
•формирование умений работать в группе с выполнением различных социальных ролей, представлять и отстаивать свои взгляды и убеждения, вести дискуссию.
Общими предметными результатами обучения физике в основной школе являются:
•знания о природе важнейших физических явлений окружающего мира и понимание смысла физических законов, раскрывающих связь изученных явлений;
•умения пользоваться методами научного исследования явлений природы, проводить наблюдения, планировать и выполнять эксперименты, обрабатывать результаты измерений, представлять результаты измерений с помощью таблиц, графиков и формул, обнаруживать зависимости между физическими величинами, объяснять полученные результаты и делать выводы, оценивать границы погрешностей результатов измерений;
•умения применять теоретические знания по физике на практике, решать физические задачи на применение полученных знаний;
•умения и навыки применять полученные знания для объяснения принципов действия важнейших технических устройств, решения практических задач повседневной жизни, обеспечения безопасности своей жизни, рационального природопользования и охраны окружающей среды;
•формирование убеждения в закономерной связи и познаваемости явлений природы, в объективности научного знания, в высокой ценности науки в развитии материальной и духовной культуры людей;
•развитие теоретического мышления на основе формирования умений устанавливать факты, различать причины и следствия, строить модели и выдвигать гипотезы, отыскивать и формулировать доказательства выдвинутых гипотез, выводить из экспериментальных фактов и теоретических моделей физические законы;
•коммуникативные умения докладывать о результатах своего исследования, участвовать в дискуссии, кратко и точно отвечать на вопросы, использовать справочную литературу и другие источники информации.
Частными предметнымирезультатами обучения физике в основной школе, на которых основываются общие результаты, являются:
•понимание и способность объяснять такие физические явления, как свободное падение тел, атмосферное давление, плавание тел, диффузия, большая сжимаемость газов, малая сжимаемость жидкостей и твердых тел;
•умения измерять расстояние, промежуток времени, скорость, массу, силу, работу силы, мощность, кинетическую энергию, потенциальную энергию, температуру;
•владение экспериментальными методами исследования в процессе самостоятельного изучения зависимости пройденного пути от времени, удлинения пружины от приложенной силы, силы тяжести от массы тела, силы трения скольжения от площади соприкосновения тел и силы нормального давления, силы Архимеда от объема вытесненной воды,
•понимание смысла основных физических законов и умение применять их на практике: законы Паскаля и Архимеда,
•понимание принципов действия машин, приборов и технических устройств, с которыми каждый человек постоянно встречается в повседневной жизни, и способов обеспечения безопасности при их использовании;
•овладение разнообразными способами выполнения расчетов для нахождения неизвестной величины в соответствии с условиями поставленной задачи на основании использования законов физики;
•умение использовать полученные знания, умения и навыки в повседневной жизни (быт, экология, охрана здоровья, охрана окружающей среды, техника безопасности и др.
Содержание учебного предмета
Содержание обучения представлено в программе разделами «Механические явления» («Законы взаимодействия и движения тел», Механические колебания и волны. Звук»), «Электромагнитные явления» («Электромагнитное поле»), «Квантовые явления» («Строение атома и атомного ядра»), «Элементы астрономии» («Строение и эволюция Вселенной»)
МЕХАНИЧЕСКИЕ ЯВЛЕНИЯ
Законы взаимодействия и движения тел (23 ч)
Материальная точка. Система отсчета. Перемещение. Скорость прямолинейного равномерного движения. Прямолинейное равноускоренное движение: мгновенная скорость, ускорение, перемещение. Графики зависимости кинематических величин от времени при равномерном и равноускоренном движении. Относительность механического движения. Геоцентрическая и гелиоцентрическая системы мира. Инерциальная система отсчета. Первый, второй и третий законы Ньютона. Свободное падение. Невесомость. Закон всемирного тяготения. Искусственные спутники Земли. Импульс. Закон сохранения импульса. Реактивное движение.
Лабораторные работы
Лабораторная работа №1 «Исследование равноускоренного движения без начальной скорости»
Лабораторная работа №2 «Измерение ускорения свободного падения»
Механические колебания и волны. Звук (12 ч)
Колебательное движение. Колебания груза на пружине. Свободные колебания. Колебательная система. Маятник. Амплитуда, период, частота колебаний. Гармонические колебания. Превращение энергии при колебательном движении. Затухающие колебания. Вынужденные колебания. Резонанс. Распространение колебаний в упругих средах. Поперечные и продольные волны. Длина волны. Связь длины волны со скоростью ее распространения и периодом (частотой). Звуковые волны. Скорость звука. Высота, тембр и громкость звука. Эхо. Звуковой резонанс. Интерференция звука.
Лабораторные работы
Лабораторная работа №3 «Исследование зависимости периода и частоты свободных колебаний маятника от длины его нити»
ЭЛЕКТРОМАГНИТНЫЕ ЯВЛЕНИЯ
Электромагнитное поле (16 ч)
Однородное и неоднородное магнитное поле. Направление тока и направление линий его магнитного поля. Правило буравчика. Обнаружение магнитного поля. Правило левой руки. Индукция магнитного поля. Магнитный поток. Опыты Фарадея. Электромагнитная индукция. Направление индукционного тока. Правило Ленца. Явление самоиндукции. Переменный ток. Генератор переменного тока. Преобразования энергии в электрогенераторах. Трансформатор. Передача электрической энергии на расстояние. Электромагнитное поле. Электромагнитные волны. Скорость распространения электромагнитных волн. Влияние электромагнитных излучений на живые организмы. Колебательный контур. Получение электромагнитных колебаний. Принципы радиосвязи и телевидения. Интерференция света. Электромагнитная природа света. Преломление света. Показатель преломления. Дисперсия света. Цвета тел. Спектрограф и спектроскоп. Типы оптических спектров. Спектральный анализ. Поглощение и испускание света атомами. Происхождение линейчатых спектров.
Лабораторные работы
Лабораторная работа №4 «Изучение явления электромагнитной индукции»
Лабораторная работа №5 «Наблюдение сплошного и линейчатых спектров испускания»
КВАНТОВЫЕ ЯВЛЕНИЯ
Строение атома и атомного ядра (11 ч)
Радиоактивность как свидетельство сложного строения атомов. Альфа-, бета- и гамма-излучения. Опыты Резерфорда. Ядерная модель атома. Радиоактивные превращения атомных ядер. Сохранение зарядового и массового чисел при ядерных реакциях. Методы наблюдения и регистрации частиц в ядерной физике. Протонно-нейтронная модель ядра. Физический смысл зарядового и массового чисел. Изотопы. Правило смещения для альфа- и бета-распада. Энергия связи частиц в ядре. Деление ядер урана. Цепная реакция. Ядерная энергетика. Экологические проблемы работы атомных электростанций. Период полураспада. Закон радиоактивного распада. Влияние радиоактивных излучений на живые организмы. Термоядерная реакция.
Лабораторные работы
Лабораторная работа №6 «Измерение естественного радиационного фона дозиметром»
Лабораторная работа №7 «Изучение деления ядра атома урана по фотографии треков»
Лабораторная работа №8 «Оценка периода полураспада находящихся в воздухе продуктов распада газа радона»
Лабораторная работа №9 « Изучение треков заряженных частиц по готовым фотографиям»
ЭЛЕМЕНТЫ АСТРОНОМИИ
Строение и эволюция Вселенной (5 ч)
Состав, строение и происхождение Солнечной системы. Планеты и малые тела Солнечной системы. Строение, излучение и эволюция Солнца и звезд. Строение и эволюция Вселенной.
Тематическое планирование с указанием количества часов,
отводимых на освоение каждой темы
№ | Название темы | Количество отводимых часов | Количество контрольных работ | Количество лабораторных работ |
1 | Законы взаимодействия и движения тел | 23 | 1 | 2 |
2 | Механические колебания и волны. Звук | 12 | 1 | 1 |
3 | Электромагнитное поле | 16 | — | 2 |
4 | Строение атома и атомного ядра | 11 | 1 | 4 |
5 | Строение и эволюция Вселенной | 5 | — | — |
6 | Итоговая контрольная работа | 1 | 1 |
|
ИТОГО | 68 | 4 | 9 |
Контрольная работа по физике Строение атома и атомного ядра.
Использование энергии атомных ядер для 9 классаКонтрольная работа по физике Строение атома и атомного ядра. Использование энергии атомных ядер для 9 класса с ответами. Контрольная работа представлена в 4 вариантах, в каждом варианте по 9 заданий.
Вариант 1
1. β-излучение — это
1) вторичное радиоактивное излучение при начале цепной реакции
2) поток нейтронов, образующихся в цепной реакции
3) электромагнитные волны
4) поток электронов
2. При изучении строения атома в рамках модели Резерфорда моделью ядра служит
1) электрически нейтральный шар
2) положительно заряженный шар с вкраплениями электронов
3) отрицательно заряженное тело малых по сравнению с атомом размеров
4) положительно заряженное тело малых по сравнению с атомом размеров
3. В ядре элемента 23892U содержится
1) 92 протона, 238 нейтронов
2) 146 протонов, 92 нейтрона
3) 92 протона, 146 нейтронов
4) 238 протонов, 92 нейтрона
4. На рисунке изображены схемы четырех атомов. Черными точками обозначены электроны. Атому 135В соответствует схема
5. Элемент AZX испытал α-распад. Какой заряд и массовое число будет у нового элемента Y?
1) AZY
2) A-4Z-2Y
3) AZ-1Y
4) A+4Z-1Y
6. Укажите второй продукт ядерной реакции
94Be + 42He → 126C + …
1) 10n
2) 42He
3) 0-1е
4) 21H
7. Установите соответствие между научными открытиями и учеными, которым эти открытия принадлежат. К каждой позиции первого столбца подберите соответствующую позицию второго и запишите выбранные цифры под соответствующими буквами.
НАУЧНЫЕ ОТКРЫТИЯ
А) Явление радиоактивности
Б) Открытие протона
В) Открытие нейтрона
УЧЕНЫЕ
1) Д. Чедвик
2) Д. Менделеев
3) А. Беккерель
4) Э. Резерфорд
5) Д. Томсон
8. Определите энергию связи ядра изотопа дейтерия 21Н (тяжелого водорода). Масса протона приблизительно равна 1,0073 а.е.м., нейтрона 1,0087 а.е.м., ядра дейтерия 2,0141 а.е.м., 1 а.е.м. = 1,66 · 10-21 кг, а скорость света с = 3 · 108 м/с.
9. Записана ядерная реакция, в скобках указаны атомные массы (в а.е.м.) участвующих в ней частиц.
136C(13,003354) + 11H(1,00783) → 147N(14,00307)
Вычислите энергетический выход ядерной реакции. Учтите, что 1 а.е.м. = 1,66 · 10-27 кг, а скорость света с = 3 · 108 м/с.
Вариант 2
1. γ-излучение — это
1) поток ядер гелия
2) поток протонов
3) поток электронов
4) электромагнитные волны большой частоты
2. Планетарная модель атома обоснована
1) расчетами движения небесных тел
2) опытами по электризации
3) опытами по рассеянию α-частиц
4) фотографиями атомов в микроскопе
3. В какой из строчек таблицы правильно указана структура ядра олова 11050Sn?
р — число протонов | n — число нейтронов | |
1) | 110 | 50 |
2) | 60 | 50 |
3) | 50 | 110 |
4) | 50 | 60 |
4. Число электронов в атоме равно
1) числу нейтронов в ядре
2) числу протонов в ядре
3) разности между числом протонов и нейтронов
4) сумме протонов и электронов в атоме
5. Какой порядковый номер в таблице Менделеева имеет элемент, который образуется в результате β-распада ядра элемента с порядковым номером Z?
1) Z + 2
2) Z + 1
3) Z − 2
4) Z − 1
6. Какая бомбардирующая частица X участвует в ядерной реакции
X + 115B → 147N + 10n
1) α-частица 42He
2) дейтерий 21H
3) протон 11H
4) электрон 0-1е
7. Установите соответствие между физическими величинами и формулами, по которым эти величины определяются. К каждой позиции первого столбца подберите соответствующую позицию второго и запишите выбранные цифры под соответствующими буквами.
ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ
А) Энергия покоя
Б) Дефект массы
В) Массовое число
ФОРМУЛЫ
1) Δmc2
2) (Zmp + Nmn) − Mя
3) mc2
4) Z + N
5) A − Z
8. Определите энергию связи ядра гелия 42Не (α-частицы). Масса протона приблизительно равна 1,0073 а.е.м., нейтрона 1,0087 а.е.м., ядра гелия 4,0026 а.е.м., 1 а.е.м. = 1,66 · 10-27 кг, а скорость света с = 3 · 108 м/с.
9. Записана ядерная реакция, в скобках указаны атомные массы (в а.е.м.) участвующих в ней частиц.
73Li(7,061) + 21H(2,0141) → 84N(8,0053) + 10n(1,0087)
Какая энергия выделяется в этой реакции? Учтите, что 1 а.е.м. = 1,66 · 10-27 кг, а скорость света с = 3 · 108 м/с.
Вариант 3
1. α-излучение — это
1) поток ядер гелия
2) поток протонов
3) поток электронов
4) электромагнитные волны большой частоты
2. В опыте Резерфорда большая часть α-частиц свободно проходит сквозь фольгу, практически не отклоняясь от прямолинейных траекторий, потому что
1) ядро атома имеет положительный заряд
2) электроны имеют отрицательный заряд
3) ядро атома имеет малые (по сравнению с атомом) размеры
4) α-частицы имеют большую (по сравнению с ядрами атомов) массу
3. Сколько протонов и нейтронов содержится в ядре элемента 21482Рb?
1) 82 протона, 214 нейтронов
2) 82 протона, 132 нейтрона
3) 132 протона, 82 нейтрона
4) 214 протонов, 82 нейтрона
4. На рисунке изображены схемы четырех атомов. Черными точками обозначены электроны. Атому 168O соответствует схема
5. Изотоп ксенона 11254Xe после спонтанного α-распада превратился в изотоп
1) 10852Te
2) 11050Sn
3) 11255Cs
4) 11354Xe
6. Какая вторая частица образуется в ходе реакции термоядерного синтеза
21H + 31H → 42He + …
1) нейтрон 10n
2) α-частица 42He
3) протон 11H
4) электрон 0-1е
7. Установите соответствие между научными открытиями и учеными, которым эти открытия принадлежат. К каждой позиции первого столбца подберите соответствующую позицию второго и запишите выбранные цифры под соответствующими буквами.
НАУЧНЫЕ ОТКРЫТИЯ
А) Явление радиоактивности
Б) Открытие протона
В) Открытие нейтрона
УЧЕНЫЕ
1) Э. Резерфорд
2) Д. Томсон
3) Д. Менделеев
4) А. Беккерель
5) Д. Чедвик
8. Определите энергию связи ядра лития 63Li. Масса протона приблизительно равна 1,0073 а.е.м., нейтрона 1,0087 а.е.м., ядра лития 6,0151 а.е.м., 1 а.е.м. = 1,66 · 10-27 кг, а скорость света с = 3 · 108 м/с.
9. Записана ядерная реакция, в скобках указаны атомные массы (в а.е.м.) участвующих в ней частиц.
23994Pu(239,05) → 10643Tc(105,91) + 13351Sb(132,92)
Вычислите энергетический выход ядерной реакции. Учтите, что 1 а.е.м. = 1,66 · 10-27 кг, а скорость света с = 3 · 108 м/с.
Вариант 4
1. В конце XIX — начале ХХ века было открыто явление радиоактивного распада, в ходе которого из ядра вылетают α-частицы. Эти экспериментальные факты позволяют выдвинуть гипотезу о
А: сложном строении атома
Б: возможности превращения одних элементов в другие
1) только А
2) только Б
3) и А, и Б
4) ни А, ни Б
2. Планетарная модель атома основана на опытах по
1) растворению и плавлению твёрдых тел
2) ионизации газа
3) химическому получению новых веществ
4) рассеянию α-частиц
3. Какая из строчек таблицы правильно отражает структуру ядра 2713Al?
р — число протонов | n — число нейтронов | |
1) | 13 | 14 |
2) | 13 | 27 |
3) | 27 | 13 |
4) | 27 | 40 |
4. Суммарный заряд электронов в нейтральном атоме:
1) отрицательный и равен по модулю заряду ядра
2) положительный и равен по модулю заряду ядра
3) может быть положительным или отрицательным, но равным по модулю заряду ядра
4) отрицательный и всегда больше по модулю заряда ядра
5. Ядро изотопа золота 20479Au претерпевает β-распад. В результате получается изотоп
1) 20077Ir
2) 20478Pt
3) 20480Hg
4) 20881Tl
6. В результате бомбардировки изотопа лития 78Li ядрами дейтерия образуется изотоп бериллия:
73Li + 21H → 84Be + …
Какая при этом испускается частица?
1) α-частица 42He
2) нейтрон 10n
3) протон 11H
4) электрон 0-1е
7. Установите соответствие между физическими величинами и формулами, по которым эти величины определяются. К каждой позиции первого столбца подберите соответствующую позицию второго и запишите выбранные цифры под соответствующими буквами.
ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ
А) Энергия связи ядра
Б) Число нейтронов
В) Дефект массы
ФОРМУЛЫ
1) Δmc2
2) (Zmp + Nmn) − Mя
3) mc2
4) Z + N
5) A − Z
8. Определите энергию связи ядра углерода 126C. Масса протона приблизительно равна 1,0073 а.е.м., нейтрона 1,0087 а.е.м., ядра углерода 12,0000 а.е.м., 1 а.е.м. = 1,66 · 10-27 кг, а скорость света с = 3 · 108 м/с.
9. Записана ядерная реакция, в скобках указаны атомные массы (в а. е.м.) участвующих в ней частиц.
21H(2,0141) + 31H(3,0161) → 42He(4,0026) + 10n(1,0087)
Какая энергия выделяется в этой реакции? Учтите, что 1 а.е.м. = 1,66 · 10-27 кг, а скорость света с = 3 · 108 м/с.
Ответы на контрольную работу по физике Строение атома и атомного ядра. Использование энергии атомных ядер для 9 класса
Вариант 1
1-4
2-4
3-3
4-3
5-2
6-1
7. А3 Б4 В1
8. 2,8 · 10-13 Дж
9. 2,8 · 10-12 Дж
Вариант 2
1-4
2-3
3-4
4-2
5-2
6-1
7. А3 Б2 В4
8. 4,4 · 10-12 Дж
9. 2,4 · 10-12 Дж
Вариант 3
1-1
2-3
3-2
4-1
5-1
6-1
7. А4 Б1 В5
8. 4,9 · 10-12 Дж
9. 3,3 · 10-11 Дж
Вариант 4
1-3
2-4
3-1
4-1
5-3
6-2
7.