стороны, вершины, диагонали. Периметр многоугольника
Многоугольник — это геометрическая фигура, ограниченная замкнутой ломаной линией, не имеющей самопересечений.
Звенья ломаной называются сторонами многоугольника, а её вершины — вершинами многоугольника.
Углами многоугольника называются внутренние углы, образованные соседними сторонами. Число углов многоугольника равно числу его вершин и сторон.
Многоугольникам даются названия по количеству сторон. Многоугольник с наименьшим количеством сторон называется треугольником, он имеет всего три стороны. Многоугольник с четырьмя сторонами называется четырёхугольником, с пятью — пятиугольником и т. д.
Обозначение многоугольника составляют из букв, стоящих при его вершинах, называя их по порядку (по часовой или против часовой стрелки). Например, говорят или пишут: пятиугольник ABCDE
:
В пятиугольнике
Выпуклые и вогнутые
Многоугольник называется выпуклым, если ни одна из его сторон, продолженная до прямой линии, его не пересекает. В обратном случае многоугольник называется вогнутым:
Периметр
Сумма длин всех сторон многоугольника называется его периметром.
Периметр многоугольника ABCDE равен:
AB + BC + CD + DE + EA.
Если у многоугольника равны все стороны и все углы, то его называют правильным. Правильными многоугольниками могут быть только выпуклые многоугольники.
Диагональ
Диагональ многоугольника — это отрезок, соединяющий вершины двух углов, не имеющих общей стороны. Например, отрезок AD является диагональю:Единственным многоугольником, который не имеет ни одной диагонали, является треугольник, так как в нём нет углов, не имеющих общих сторон.
Если из какой-нибудь вершины многоугольника провести все возможные диагонали, то они разделят многоугольник на треугольники:
Треугольников будет ровно на два меньше, чем сторон:
t = n — 2,
где t — это количество треугольников, а n — количество сторон.
Разделение многоугольника на треугольники с помощью диагоналей используется для нахождения площади многоугольника, так как чтобы найти площадь какого-нибудь многоугольника, нужно разбить его на треугольники, найти площадь этих треугольников и полученные результаты сложить
Равновеликие фигуры — свойства, формулы и примеры
Равные многоугольники
По определению равные фигуры должны быть во всём одинаковыми, включая площадь, длину сторон, размер углов и другие параметры. Чтобы рассмотреть всё из них, уйдёт много времени, да это и не нужно, ведь они взаимозависимы. Хорошим примером будет самый простой многоугольник — треугольник. Существует несколько правил, по которым можно определить, равны ли 2 треугольника между собой или нет:
- По трём сторонам.
- По стороне и двум прилегающим к ней углам.
- По двум сторонам и углу между ними.
Нельзя путать первое условие с тремя углами. Ведь если в треугольнике равны 3 угла, они необязательно будут равными, но будут подобными.
Названия условий достаточно точно описывают критерии, по которым можно определить одинаковые 2 треугольника или нет. Из них следует, что необязательно знать все параметры: часто хватает только нескольких из них для определения «равности».
В большинстве случаев определить одинаковость других фигур гораздо сложнее, нежели треугольников. К счастью, чаще всего в школьной геометрии такой класс задач не рассматривают или даются дополнительные данные, помогающие с решением.
Например, доказательство «равности» для четырёхугольника сложнее, да и почти не встречается. Но если по условию сказано, что четырёхугольник не произвольный, а имеет прямые углы, задача становится проще. В таком случае рассматривается прямоугольник. А для него достаточно, чтобы 2 не противолежащие стороны были равны.
Если указано ещё и условие, что прямоугольник является квадратом, достаточно указать, что у двух таких фигур совпадает по длине одна сторона и уже этого будет достаточно.
Равность правильных фигур
Частным и самым простым для сравнения является случай, когда многоугольник по условию правильный. Так называется фигура с одинаковыми сторонами и углами. Например, равносторонний треугольник и квадрат. Важно не забывать проверить равны ли углы, так как не каждая фигура правильная. Тот же ромб по определению имеет 4 совпадающие по длине стороны, но разные углы. При сравнении правильных многоугольников достаточно указать, что, хотя бы одна сторона фигуры равна стороне у другой. Это будет достаточное условие для доказательства «равности».
Самым простым и наглядным способом сверки двух фигур будет не геометрический с помощью правил, а путём наложения рисунков друг на друга. Разумеется, что он не претендует на точность, но изобразить параллелограмм и наложить его на другой нагляднее, чем сравнивать, например, углы. Понятно, что так можно только ознакомиться с концепцией «равности» и показать, какие фигуры называются равными, для упрощения в дальнейшем решения задач, но доказывать что-либо нельзя, ввиду неточности метода.
Если при сравнении двух тел оказывается, что их площади равны, такие тела (многоугольники) являются равновеликими. Как и в случае с прошлым, это определение звучит несложно. Проблемы могут начаться непосредственно при вычислении площадей. Самый простой многоугольник — треугольник. Для вычисления его площади существует множество способов.
Вычисление площади треугольника
Чаще всего приходится работать с прямоугольными треугольниками. Их площадь вычислить несложно — это полупроизведение катетов (сторон, между которыми лежит прямой угол). Таким образом, даже если стороны двух фигур по длине разные, но их произведение равно, они равновеликие. Например, треугольник с катетами 4 и 4 равен по площади многоугольнику с катетами 16 и 1. Так как их полупроизведение, а значит и площадь равна 8.
Если же треугольник произвольный (то есть не является частным случаем — прямоугольным, равнобедренным или равносторонним), можно воспользоваться одной из 5 формул, позволяющих вычислить его площадь.
- По двум сторонам и углу между ними.
- По стороне и высоте, проведённой к ней.
- По трём сторонам и полупериметру.
- По полупериметру и радиусу вписанной окружности.
- По трём сторонам и радиусу описанной окружности.
То, какую формулу использовать, будет зависеть от данных, предоставленных в задаче. Иногда придётся проводить дополнительное построение, например, провести высоту или использовать свойства, что биссектрисы пересекаются в центре вписанной окружности. Если не даны все 3 стороны, использовать третью формулу не получится.
Важно понять, что фигуры могут быть разными по количеству углов, но всё равно считаться равновеликими — в учёт идёт только площадь, остальные параметры не важны. Например, прямоугольный треугольник с катетами 2 и 4 будет визуально казаться больше, чем квадрат со стороной 2, но их площади совпадают и равны 4 (площадь прямоугольника считается как произведение прилежащих сторон друг на друга). По определению это делает их равновеликими.
Визуальный способ
Существует также наглядный, но неточный способ. Нужно взять листок в клеточку и нарисовать на нём многоугольники. Если рисунок получился большой — не страшно, так будет только проще в дальнейшем. Следующий шаг — посчитать количество клеток, которое заняла каждая фигура и сравнить. Если оно равно, равновеликость доказана. Опять же метод не точный, но для введения в концепцию площадей и их «равности» подойдёт.
Иногда встречается словосочетание «равносоставленная фигура». Такими называют произвольные многоугольники, которые можно составить друг из друга путём разрезания одного из них на одинаковые объекты и перекладывания. Например, если прямоугольник 4 на 1 нарезать на одинаковые части — квадраты 1 на 1, то из полученных маленьких квадратов можно составить один большой со стороной 2. Но это не более чем забавное свойство некоторых фигур и в геометрии фактически почти не используется.
Основные правила математики с примерами. 5 класс — Сайт учителя математики Косыхиной Н.В.
Основные правила математики с примерами. 5 класс
Содержание
- Натуральные числа
- Сравнение натуральных чисел
- Свойства сложения
- Формула пути
- Корень уравнения
- Правила решения уравнений
- Отрезок, прямая, луч
- Угол, биссектриса угла
- Углы: развернутый, прямой, острый, тупой
- Многоугольники. Равные фигуры
- Треугольники: остроугольный, прямоугольный, тупоугольный
- Треугольники: равнобедренный, равносторонний, разносторонний
Натуральные числа
Числа 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 и т. д., которые используют при счете предметов, называют натуральными.
Сравнение натуральных чисел
Число меньше любого натурального числа.
0<1, 0<100
Из двух натуральных чисел, которые имеют разное количество цифр большим является то, у которого количество цифр больше.
4352⏟4>999⏟3
Из двух натуральных чисел с одинаковым количеством цифр большим является то, у которого больше первая (при чтении слева направо) из неодинаковых цифр
3561>3559
Свойства сложения
Переместительный закон:
15+10=10+15
Сочетательный закон:
(23+15)+25=23+(15+25)
Формула пути
S=V·t,где S — пройденный путь, V — скорость движения, t — время, за которое пройден путь S
Корень уравнения
Корнем (решением) уравнения называют число, которое при подстановке его вместо буквы превращает уравнение в верное числовое равенство.
2·x+10=16
x = 3 — корень, так как 2·3+10=16
Что значит «Решить уравнение»
Решить уравнение — это значит найти все его корни или убедиться, что их вообще нет.
Правила решения уравнений
- Чтобы найти неизвестное слагаемое, надо из суммы вычесть известное слагаемое.
20слагаемое+xслагаемое=100суммаx = 100 — 20x = 80
- Чтобы найти неизвестное уменьшаемое, надо к разности прибавить вычитаемое.
xуменьшаемое—10вычитаемое=40разностьx = 40 + 10x = 50
- Чтобы найти неизвестное вычитаемое, надо из уменьшаемого вычесть разность.
50уменьшаемое—xвычитаемое=40разностьx = 50 — 40x = 10
- Чтобы найти неизвестный множитель, надо произведение разделить на известный множитель.
xмножитель·7множитель=56произведениеx = 56 : 7x = 8
- Чтобы найти неизвестное делимое, надо делитель умножить на частное.
xделимое:8делитель=9частноеx = 9 · 8x = 72
- Чтобы найти неизвестный делитель, надо делимое разделить на частное.
42делимое:xделитель=7частноеx = 42 : 7x = 6
Отрезок, прямая, луч
Отрезок
Отрезок — часть прямой, ограниченная двумя точками(концами) и все точки между этими концами(внутренние точки отрезка)
Свойство длины отрезка
Если на отрезке отметить точку , то длина отрезка равна сумме длин отрезков и .
Равные отрезки
Два отрезка называют равными, если они совмещаются при наложении.
Свойство прямой
Через две точки проходит только одна прямая.
Измерить отрезок
Измерить отрезок означает подсчитать, сколько единичных отрезков в нем помещается
Ломаная
Ломаная — геометрическая фигура, состоящая из отрезков, последовательно соединенных друг с другом
Луч
Луч (полупрямая) — это геометрическая фигура, часть прямой, состоящая из точки(начала луча) и всех точек прямой, лежащих по одну сторону от начала луча.В названии луча присутствуют две буквы, например, . Причем первая буква всегда обозначает точку начала луча, поэтому менять местами буквы нельзя.
Угол, биссектриса угла
Угол
Фигуру, образованную двумя лучами, имеющими общее начало, называют углом.
Равные углы
Два угла называют равными, если они совмещаются при наложении.
Свойство величины угла
Если между сторонами угла ∠ провести луч , то градусная мера ∠ равна сумме градусных мер углов ∠ и ∠, то есть ∠ = ∠+ ∠.
Биссектриса угла
Луч, который делит угол на два равных угла, называется биссектрисой угла.
Углы: развернутый, прямой, острый, тупой
Развернутый угол
Угол, стороны которого образуют прямую, называют развернутым. Градусная мера развернутого угла равна 180°.
Прямой угол
Угол, градусная мера которого равна 90°, называют прямым.
Острый угол
Угол, градусная мера которого меньше 90°, называют острым.
Тупой угол
Угол, градусная мера которого больше 90°, но меньше 180°, называют тупым.
Многоугольники. Равные фигуры
Равные многоугольники
Два многоугольники называют равными, если они совмещаются при наложении.
Равные фигуры
Две фигуры называют равными, если они совмещаются при наложении.
Треугольники: остроугольный, прямоугольный, тупоугольный
Остроугольный треугольник
Если все углы треугольника острые, то его называют остроугольным треугольником.
Прямоугольный треугольник
Если один из углов треугольника прямой, то его называют прямоугольным треугольником.
Тупоугольный треугольник
Если один из углов треугольника тупой, то его называют тупоугольным треугольником.
Треугольники: равнобедренный, равносторонний, разносторонний
Равнобедренный треугольник
Если две стороны треугольника равны, то его называют равнобедренным треугольником.
Равносторонний треугольник
Если три стороны треугольника равны, то его называют равносторонним треугольником.
Периметр равностороннего треугольника
Если сторона равностороннего треугольника равна , то его периметр вычисляют по формуле
Разносторонний треугольник
Если три стороны треугольника имеют разную длину, то его называют разносторонним треугольником.
Прямоугольник. Квадрат. Периметр
Прямоугольник
Если в четырехугольнике все углы прямые, то его называют прямоугольником.
Свойство прямоугольника
Противоположные стороны прямоугольника равны.
Периметр прямоугольника
Если соседние стороны прямоугольника равны и , то его периметр вычисляют по формуле
Квадрат
Прямоугольник, у которого все стороны равны, называют квадратом.
Периметр квадрата
Если сторона квадрата равна , то его периметр вычисляют по формуле .
Умножение. Свойства умножения
Умножение
- Если один из двух множителей равен 1, то произведение равно второму множителю.
- Если один из множителей равен нулю, то произведение равно нулю.
- Если произведение равно нулю, то хотя бы один из множителей равен нулю.
Свойства умножения
- Переместительный закон умножения:
- Сочетательный закон умножения:
- Распределительное свойство умножения относительно сложения:
2·(3+10) = 2·3 + 2·103·11 + 3·4 = 3·(11 + 4)
- Распределительное свойство умножения относительно вычитания:
2·(15—7) = 2·15 — 2·73·10 — 3·4 = 3·(10 — 4)
Деление. Деление с остатком
Деление
Для натуральных чисел равенство является правильным, если является правильным равенство
15 : 5 = 3 -правильное равенство, так как равенство 5 · 3 = 15 верное
В равенстве число называют делимым, число — делителем, число и запись — частным от деления, отношением, долей.
На ноль делить нельзя.
Для любого натурального числа правильными являются равенства:
,
Деление с остатком
, где — делимое, — делитель, — неполное частное, — остаток, .
154делимое=50делитель · 3неполное частное + 4остаток, 4<50
Если остаток равен нулю, то говорят, что число делится нацело на число .
Площадь. Площадь квадрата, прямоугольника
Свойства площади фигуры
Равные фигуры имеют равные площади;
Площадь фигуры равна сумме площадей фигур, из которых она состоит.
Площадь прямоугольника
Площадь прямоугольника равна произведению длин его соседних сторон, выраженных в одних и тех же единицах.
Площадь квадрата
,
где — площадь квадрата, — длина его стороны.
Объем. Объем прямоугольного параллелепипеда, куба
Свойства объема фигуры
Равные фигуры имеют равные объемы;
Объем фигуры равен сумме объемов фигур, из которых она состоит.
Объем прямоугольного параллелепипеда
- ,
где — объем параллелепипеда, , и — его измерения, выраженные в одних и тех же единицах;
, где — площадь поверхности прямоугольного параллелепипеда.
- ,
где — площадь основания параллелепипеда, — его высота.
Объем куба
,
где — объем куба, — длина его ребра.
Дроби: правильная, неправильная, сравнение дробей
Правильная дробь
Дробь, числитель которой меньше знаменателя, называют правильной
Неправильная дробь
Дробь, числитель которой больше знаменателя или равен ему, называют неправильной.
Сравнение дробей
- Из двух дробей с одинаковыми знаменателями больше та, числитель которой больше, и меньше та, числитель которой меньше.
- Из двух дробей с одинаковыми числителями больше та, знаменатель которого меньше, и меньшая та, знаменатель которой больше.
- Все правильные дроби меньше единицы, а неправильные — больше или равны единице.
- Любая неправильная дробь больше любой правильной дроби.
Сложение и вычитание дробей с одинаковыми знаменателями
- Чтобы найти сумму двух дробей с одинаковыми знаменателями, нужно сложить их числители, а знаменатель оставить тот же.
- Чтобы найти разность двух дробей с одинаковыми знаменателями, надо из числителя уменьшаемого вычесть числитель вычитаемого, а знаменатель оставить тот же.
Сложение и вычитание смешанных чисел
- Чтобы найти сумму двух смешанных чисел, надо отдельно сложить их целые и дробные части.
- Чтобы найти разность двух смешанных чисел, надо от целой и дробной части уменьшаемого вычесть соответственно целую и дробную части вычитаемого.
Преобразование неправильной дроби в смешанное число
Чтобы неправильную дробь, числитель которой не делится нацело на знаменатель, преобразовать в смешанное число, нужно
- числитель разделить на знаменатель;
- полученное неполное частное записать как целую часть смешанного числа, а остаток — как числитель его дробной части.
227= смешанное число? 7322—211 227=317
Преобразование смешанного числа в неправильную дробь
Чтобы преобразовать смешанное число в неправильную дробь нужно
- целую часть числа умножить на знаменатель дробной части;
- к полученному произведению прибавить числитель дробной части;
- эту сумму записать как числитель неправильной дроби;
- в его знаменателе записать знаменатель дробной части смешанного числа.
523= неправильная дробь?523=5*3+23=15+23=173
Десятичные дроби: свойства, сравнение, округление
Свойства десятичной дроби
Если к десятичной дроби справа приписать любое количество нулей, то получим дробь, равную данной.
Значение дроби, которая заканчивается нулями, не изменится, если последние нули в его записи отбросить.
2,23 = 2,230 = 2,230000005,50000=5,50000=5,5
Сравнение десятичных дробей
Из двух десятичных дробей больше та, у которой целая часть больше.
Чтобы сравнить две десятичные дроби с равными целыми частями и разным количеством цифр после запятой, надо
- с помощью приписывания нулей справа уравнять количество цифр в дробных частях,
- после чего сравнить полученные дроби поразрядно.
Сравнить 5,03 и 5,0375.5,03⏟2=5,0300⏟4 и 5,0375⏟4 ; 5,0300 < 5,0375.
Округление десятичных дробей
Для того чтобы десятичную дробь округлить до единиц, десятых, сотых и т. д., надо
- все следующие за этим разрядом цифры отбросить.
- если при этом первая из цифр, которые отбрасывают равна 0,1, 2, 3, 4, то последнюю из цифр, которые оставляют, не меняют;
- если же первая из цифр, которые отбрасывют, равна 5, 6, 7, 8, 9, то последнюю из цифр, которые оставляют, увеличивают на единицу.
Округлить 5,248 и 3,952:а) до десятых:5,248≈5,2; 3,952≈4,0;б) до сотых:5,248≈5,25;3,952≈3,95.
Десятичные дроби: сложение, вычитание
Сложение десятичных дробей
Чтобы найти сумму двух десятичных дробей, нужно:
- уравнять количество цифр после запятых;
- записать слагаемые друг под другом так, чтобы каждый разряд второго слагаемого оказался под соответствующим разрядом первого слагаемого;
- сложить полученные числа так, как складывают натуральные числа;
- поставить в полученной сумме запятую под запятыми.
Сложить 2,5 и 3,623.2,500⏟3 и 3,263⏟3;2,500+3,2635,763
Вычитание десятичных дробей
Чтобы найти разность двух десятичных дробей, нужно:
- уравнять количество цифр после запятых;
- записать вычитаемое под уменьшаемым так, чтобы каждый разряд вычитаемого оказался под соответствующим разрядом уменьшаемого;
- выполнить вычитание так, как вычитают натуральные числа;
- поставить в полученной разности запятую под запятыми.
Вычесть 3,27 и 3,009.3,270⏟3 и 3,009⏟3;3,270—3,0090,261
Десятичные дроби: умножение, деление
Умножение десятичных дробей
Чтобы перемножить две десятичные дроби, надо:
- перемножить их как натуральные числа, не обращая внимания на запятые;
- в полученном произведении отделить запятой справа столько цифр, сколько их стоит после запятых в обоих множителях вместе.
Умножить 1,5 и 2,25.2×2,2511,5+1125225·33,375 —количество цифр после запятой
Чтобы умножить десятичную дробь на 10, 100, 1000 и т. д., надо в этой дроби перенести запятую вправо на 1, 2, 3 и т. д. цифры.
Умножить 1,235 на 10, 100, 1000.а) на 10:1,235 ×10⏟1=12,35б) на 100:1,235 ×100⏟2 = 123,5в) на 1000:1,235 ×1000⏟3=1235,0 = 1235
Чтобы умножить десятичную дробь на 0,1; 0,01; 0,001 и т. д., надо в этой дроби перенести запятую влево соответственно на 1, 2, 3 и т. д. цифры.
Умножить 512,3 на 0,1, 0,01 и 0,001.а) на 0,1:512,3 ×0,1⏟1=51,23б) на 0,01:512,3 ×0,01⏟2=5,123в) на 0,001:512,3 ×0,001⏟3=0,5123
Деление десятичных дробей
Чтобы разделить десятичную дробь на десятичную, надо:
- перенести в делимом и в делителе запятую вправо на столько цифр, сколько их содержится после запятой в делителе;
- выполнить деление на натуральное число.
Разделить 24,2 на 0,02.24,2 : 0,02⏟ 2= 2420,0 : 2 = 2420 : 2 = 1210.
Чтобы разделить десятичную дробь на 10, 100, 1000 и т. д., надо в этой дроби перенести запятую влево на 1, 2, 3 и т. д. цифры.
Разделить 25,5 на 10, 100, 1000.а) на 10:25,5 : 10⏟1=2,55;б) на 100:25,5 : 100⏟2=0,255;в) на 1000:25,5 : 1000⏟3=0,0255;
Среднее арифметическое
Средним арифметическим нескольких чисел называют результат деления сумму этих чисел на количество слагаемых.
Найти среднее арифметическое чисел 15, 25 и 20.
15+25+20⏞сумма чисел3⏟количество чисел = 603= 20Примечание:
Задача. Автомобиль 200 км ехал со скоростью 50 км/ч. Затем 120 км он ехал со скоростью 30 км/ч. Найти среднюю скорость.
Здесь
Vсредняя =Sобщtобщ .1) 200 + 120 = 320(км) -весь путь;
2) 200 : 50 = 4(ч) — время, затраченное на 1-ую часть пути;
3) 120 : 30 = 4(ч) — время, затраченное на 2-ую часть пути;
4) 4 + 4 = 8(ч) — все время;
5) 320 : 8 = 40(км/ч) — средняя скорость.
Ответ: 40 км/ч.
Процент
Процентом называют сотую часть величины или числа 1%=
Найти 4% от числа 20.20 : 100 = 0,2 (0,2 —это 1% от числа 20);0,2 × 4 =0,8( 0,8—искомое число).Или 4% = 4100 = 0,04;0,04 ×20 = 0,8.
A + Click Grade 5 Questions
- Home
% PDF-1.3 % 1 0 obj >] / Pages 3 0 R / Type / Catalog / ViewerPreferences >>> endobj 2 0 obj > поток 2010-10-29T12: 56: 38-04: 002013-03-04T16: 28: 10-05: 002013-03-04T16: 28: 10-05: 00Adobe InDesign CS4 (6.0.4)
5 класс AGL по математике
5 класс AGL Математика
Перейти к содержанию Приборная доскаАвторизоваться
Приборная панель
Календарь
Входящие
История
Помогите
- Мой Dashboard
- 5 класс AGL Математика
- Home
- Процедуры
- Закрытие
- Банк ресурсов
- Курс 5 класса
- Сообщество 5 класса
- Семья и сообщество 5 класса
- Сотрудничество
- Google Диск
Скоро
Просмотр календаря- Ничего на следующую неделю
Сумма внутренних углов многоугольника
Формула для нахождения суммы внутренних углов n-стороннего многоугольника (если задано количество сторон):
(n — 2) ⋅ 180 °
(Вышеупомянутая формула может применяться к обоим правильные и неправильные многоугольники)
Формула для нахождения суммы внутренних углов n-стороннего многоугольника правильного многоугольника (когда задано количество сторон «n» и размер каждого внутреннего пространства ):
n ⋅ измерение каждого внутреннего угла
Формула для определения размера каждого внутреннего угла n-стороннего многоугольника регулярного многоугольника ( , когда сумма внутренних углов и количества сторон «n» ):
Сумма внутренних углов / n
Формула для определения количества сторон обычного многоугольника (когда сумма внутренних углов и размер каждого из (даны значения ):
Сумма внутренних углов / Измерение каждого внутреннего угла
Сумма внешних углов многоугольника составляет:
360 °
Формула для нахождения количество сторон правильного многоугольника ( , если известны размеры каждого внешнего угла) :
360 / Измерение каждого внешнего угла
В любом многоугольнике сумма внутреннего угла и соответствующего ему внешнего угла составляет:
180 °
Примечание:
Если многоугольник имеет n сторон, то он будет иметь n вершин, n «количество внутренних углов и« n »внешних углов.
Правильные и неправильные многоугольники
Правильный многоугольник:
У правильного многоугольника стороны одинаковой длины, а все его внутренние и внешние углы имеют одинаковую величину.
Неправильный многоугольник:
Неправильный многоугольник может иметь стороны любой длины и углы любой меры.
Внутренние и внешние углы многоугольника
Внутренний угол:
Внутренний угол многоугольника — это угол внутри многоугольника в одной из его вершин.
Внешний угол:
Внешний угол многоугольника — это угол за пределами многоугольника, образованный одной из его сторон и продолжением соседней стороны.
Практические задачи
Задача 1:
Найдите значение «x» на приведенной ниже диаграмме.
Решение:
Диаграмма выше представляет собой неправильный многоугольник с 5 сторонами.
Формула для нахождения суммы внутренних углов n-стороннего многоугольника:
= (n — 2) ⋅ 180 °
Используя формулу, сумма внутренних углов вышеуказанного многоугольника равна
= (5 — 2) ⋅ 180 °
= 3 ⋅ 180 °
= 540 ° —— (1)
При использовании углов сумма внутренних углов вышеуказанного многоугольника составляет
= 58 ° + 100 ° + 112 ° + 25 ° + x °
= 295 ° + x ° —— (2)
Из (1) и (2) получаем
295 ° + x ° = 540 °
295 + x = 540
Вычтем 295 с обеих сторон.
x = 245
Следовательно, значение «x» равно 245.
Задача 2:
Найдите значение «x» на приведенной ниже диаграмме.
Решение:
Приведенная выше диаграмма представляет собой неправильный многоугольник с 6 сторонами (шестиугольник) с одним из внутренних углов в качестве прямого угла.
Формула для нахождения суммы внутренних углов n-стороннего многоугольника:
= (n — 2) ⋅ 180 °
Используя формулу, сумма внутренних углов указанного выше многоугольника равна
= (6 — 2) ⋅ 180 °
= 4 ⋅ 180 °
= 720 ° —— (1)
При использовании углов сумма внутренних углов вышеуказанного многоугольника составляет
= 120 ° + 90 ° + 110 ° + 130 ° + 160 + x °
= 610 ° + x ° —— (2)
Из (1) и (2) получаем
610 ° + x ° = 720 °
610 + x = 720
Вычтем 610 с обеих сторон.
x = 110
Следовательно, значение «x» равно 110.
Задача 3:
Найдите размер каждого внутреннего угла правильного многоугольника, указанного ниже.
Решение:
Посчитаем количество сторон многоугольника, указанного выше.
Итак, у приведенного выше правильного многоугольника 9 сторон.
Формула для нахождения суммы внутренних углов n-стороннего многоугольника:
= (n — 2) ⋅ 180 °
Используя формулу, сумма внутренних углов вышеуказанного многоугольника равна
= ( 9 — 2) ⋅ 180 °
= 7 ⋅ 180 °
= 1260 °
Формула для определения размера каждого внутреннего угла n-стороннего правильного многоугольника многоугольник равен
= Sum внутренних углов / n
Тогда мы имеем
= 1260 ° / 9
= 140 °
Следовательно, размер каждого внутреннего угла данного правильного многоугольника составляет 140 °.
Задача 4:
Каков размер каждого внутреннего угла правильного десятиугольника?
Решение:
Десятиугольник — это 10-сторонний многоугольник.
Формула для нахождения суммы внутренних углов n-стороннего многоугольника:
= (n — 2) ⋅ 180 °
Используя формулу, сумма внутренних углов данного десятиугольника (10-сторонний многоугольник) ) Равно
= (10-2) ⋅ 180 °
= 8 ⋅ 180 °
= 1440 °
Формула для определения размера каждого внутреннего угла n-стороннего правильного многоугольника
= Сумма внутренних углов / n
Тогда мы имеем
= 1440 ° / 10
= 144 °
Следовательно, размер каждого внутреннего угла данного правильного десятиугольника составляет 144 °.
Задача 5:
Каждый внешний угол правильного многоугольника составляет 30 °. Сколько сторон у многоугольника?
Решение:
Формула для определения количества сторон правильного многоугольника (когда известна величина каждого внешнего угла):
= 360 / Измерение каждого внешнего угла
Тогда у нас есть
= 360/30
= 12
Следовательно, данный многоугольник имеет 12 сторон.
Задача 6:
Каждый внутренний угол правильного многоугольника составляет 160 °. Сколько сторон у многоугольника?
Решение:
В любом многоугольнике сумма внутреннего угла и соответствующего ему внешнего угла равна 180 °.
То есть
Внутренний угол + Внешний угол = 180 °
160 ° + Внешний угол = 180 °
Внешний угол = 20 °
Таким образом, размер каждого внешнего угла составляет 20 °.
Формула для определения количества сторон правильного многоугольника (когда известны размеры каждого внешнего угла):
= 360 / Измерение каждого внешнего угла
Тогда
= 360/20
= 18
Следовательно, у данного многоугольника 18 сторон.
Помимо вышеперечисленного, если вам нужны еще какие-либо сведения по математике, воспользуйтесь нашим пользовательским поиском Google здесь.
Если у вас есть отзывы о наших математических материалах, напишите нам:
v4formath @ gmail.com
Мы всегда ценим ваши отзывы.
Вы также можете посетить следующие веб-страницы, посвященные различным вопросам математики.
ЗАДАЧИ СО СЛОВАМИ
Задачи со словами HCF и LCM
Задачи со словами на простых уравнениях
Задачи со словами на линейных уравнениях
Задачи со словами на квадратных уравнениях
Алгебраные задачи со словами
Проблемы со словами в поездах
Проблемы со словами по площади и периметру
Проблемы со словами по прямой и обратной вариациям
Проблемы со словами по цене за единицу
Проблемы со словами по скорости за единицу
Word задачи по сравнению ставок
Преобразование обычных единиц в текстовые задачи
Преобразование метрических единиц в текстовые задачи
Word задачи по простому проценту
Word по сложным процентам
Word по типам ngles
Проблемы с дополнительными и дополнительными углами в словах
Проблемы со словами с двойными фактами
Проблемы со словами тригонометрии
Проблемы со словами в процентах
Проблемы со словами о прибылях и убытках
Разметка и разметка Задачи
Задачи с десятичными словами
Задачи со словами о дробях
Задачи со словами о смешанных дробях
Одношаговые задачи с уравнениями со словами
Проблемы со словами о линейных неравенствах
Слово соотношения и пропорции Задачи со словами
Проблемы со временем и рабочими словами
Задачи со словами на множествах и диаграммах Венна
Проблемы со словами на возрастах
Проблемы со словами по теореме Пифагора
Процент числового слова pr проблемы
Проблемы со словами при постоянной скорости
Проблемы со словами при средней скорости
Проблемы со словами на сумме углов треугольника 180 градусов
ДРУГИЕ ТЕМЫ
Сокращения прибылей и убытков
Сокращения в процентах
Сокращения в таблице времени
Сокращения времени, скорости и расстояния
Сокращения соотношения и пропорции
Домен и диапазон рациональных функций
Домен и диапазон рациональных функций функции с отверстиями
График рациональных функций
График рациональных функций с отверстиями
Преобразование повторяющихся десятичных дробей в дроби
Десятичное представление рациональных чисел
Поиск квадратного корня с помощью длинного di зрение
L.Метод CM для решения задач времени и работы
Преобразование задач со словами в алгебраические выражения
Остаток при делении 2 в степени 256 на 17
Остаток при делении 17 в степени 23 на 16
Сумма всех трехзначных чисел, делимых на 6
Сумма всех трехзначных чисел, делимых на 7
Сумма всех трехзначных чисел, делимых на 8
Сумма всех трехзначных чисел, образованных с использованием 1, 3 , 4
Сумма всех трех четырехзначных чисел, образованных ненулевыми цифрами
Сумма всех трех четырехзначных чисел, образованных с использованием 0, 1, 2, 3
Сумма всех трех четырехзначных чисел числа, образованные с использованием 1, 2, 5, 6
ГЕОМЕТРИЯ — Тематические тексты
Главная → ГЕОМЕТРИЯ — Тематические текстыТекст 1
Геометрия позволяет нам исследовать свойства пространства в терминах плоских (двухмерных) фигур и твердых (трехмерных) фигур.Мы можем использовать геометрические методы, чтобы нарисовать линию точной длины, разрезать линию пополам, разделить пополам угол, построить треугольник и вычислить площадь сферы. Принципы геометрии были заложены греческим математиком Евклидом (ок. 330 г. до н.э. — 275 г. до н.э.) и с тех пор почти не изменились. Картографирование; Геодезия, проектирование, архитектура и компьютерные схемы — все зависит от геометрии в точном использовании углов, фигур и объема.
Текст 2
Треугольники, квадраты и пятиугольники — все это примеры многоугольников.У правильного многоугольника стороны равной длины и внутренние углы равны. Чем больше сторон у правильного многоугольника, тем больше он будет напоминать круг. Есть два вида многоугольников: выпуклые и возвратные. У выпуклого многоугольника все углы направлены внутрь. У входящего многоугольника один или несколько углов направлены внутрь.
Текст 3
Углы образуются в месте пересечения двух прямых линий. Их можно измерить с помощью транспортира или указателя угла. Углы измеряются в единицах, называемых градусами.Градус получается делением окружности круга на 360 частей равного размера. Математики используют маленький кружок как символ для обозначения градусов. Угол, возникающий в углах квадратов и других прямоугольников, составляет 90 градусов и называется прямым углом. Углы меньше 90 называются острыми углами. Углы от 90 до 180 называются тупыми. Углы от 180 до 360 называются углами отражения.
Текст 4
Преобразование — это изменение положения, размера или формы геометрической фигуры (например, треугольника).Основные преобразования — это отражение, увеличение, перемещение и вращение. Другие формы трансформации включают растяжение и сдвиг. Отражение, перемещение и вращение изменяют положение фигуры. Они не изменяют длину сторон или площадь фигуры, и поэтому называются изометриями. Растяжка увеличивает размер фигуры по одной оси. Стрижка похожа на растяжку, но площадь фигуры остается прежней. Увеличение увеличивает размер всей фигуры.